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1. Introduction

The complex sine-Gordon model [1, 2], appears as the simplest case in a family of ho-

mogeneous generalisations for the sine-Gordon model [3 – 6]. It is an integrable (1 + 1)

dimensional field theory with an internal U(1) degree of freedom. It is described by a

Lagrangian of the form

LCSG =
1

2

∂u∂̄u∗ + ∂̄u∂u∗

1 − ξ2uu∗
− m2uu∗ , (1.1)

where u is a complex field and ξ is a real coupling constant. The model accepts soliton [1, 7]

and breather solutions [8] which are non topological in nature. The sine-Gordon model is

recovered only in the chargeless limit, in which solutions become topological objects.

In a previous paper [8] we studied the classical complex sine-Gordon theory in the

bulk and on a half line. The behaviour of various solutions and their interaction with the

boundary was analysed. Through the construction of conserved currents we managed to

obtain a general boundary condition that preserves integrability

∂1u = −Cu
√

1 − uu∗ , ∂1u
∗ = −Cu∗

√
1 − uu∗ , (1.2)

where both expressions are evaluated at x = 0 and C is a real parameter. The full

Lagrangian on a half line is

LCSG =

∫ 0

−

∞ dx

(

∂0u∂0u
∗ − ∂1u∂1u

∗

1 − ξ2uu∗
− m2uu∗

)

+
[

2C
√

1 − uu∗
]

x=0
. (1.3)
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In this paper, we shall aim to extend our study of the model on the half-line to the quantum

regime.

The outline of this paper is as follows: in the second section we review the most

important results for the quantum complex sine-Gordon theory in the bulk.

In the third section we shall use the semi-classical stationary-phase approach which

is the field theory analogue of the WKB method of quantum mechanics. A generalised

version of Bohr-Sommerfeld quantisation, following the method of Dashen, Hasslacher and

Neveu [12, 13] will be used to obtain the semi-classical spectrum of boundary states and

their first order corrections. As we shall see, these corrections induce a finite renormali-

sation of both the bulk and boundary coupling constants. The former is consistent with

results from the bulk case.

Following that, the bootstrap programme devised by Ghoshal and Zamolodchikov [9]

will be used to construct the quantum reflection factors of particles and solitons scattering

off the boundary. The CSG model has a Zk-symmetric bulk S-matrix which corresponds

exactly to the coupling constant independent parts of the Affine Toda theory S-matrix.

Delius and Gandenberger [23] have investigated reflection matrices for the latter theory

and their results are adapted to postulate a reflection factor for the CSG model which is

consistent with the bulk scattering matrix found by Dorey and Hollowood [15], crossing,

unitarity and semi-classical results, at least in the case that k is even. In particular, extra

factors need to be chosen carefully with poles consistent with the existence of the boundary-

bound states, found in the previous section. That this can be done consistently provides

some evidence in favour of our conjecture.

The paper finishes with a few general remarks about the results of the quantum case

including a brief discussion about the poles in the bootstrap method and the necessary

conditions in order for them to lie within the physical strip.

2. Quantum complex sine-Gordon theory in the bulk

The complex sine-Gordon model as a quantum field theory in the bulk was studied relatively

soon after the model’s introduction. The classical treatment which showed the theory to

be completely integrable and to possess soliton solutions carrying a U(1) charge, prompted

researchers to look into the quantum case in the hope that the nice features of the model

persisted in this limit too.

The investigation of the quantum case began with the work of de Vega and Maillet [10]

in which they showed that the S-matrix is factorisable at tree level. The model remains

integrable and possesses a quantised spectrum of soliton solutions. Provided that a specific

counterterm which depends on the field is added to the Lagrangian, the S-matrix is also

factorisable at one-loop level. In their following paper [11] they used the inverse scattering

method to obtain the classical two-soliton solution and the spectrum of states using the

semi-classical methods by Dashen, Hasslacher and Neveu [12, 13].

The two-loop order case was studied by Bonneau in [14] who, continuing down the

path of de Vega and Maillet, showed that the theory is non-renormalisable unless a finite

number of counterterms (quantum corrections) are added.

– 2 –
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After a gap of almost ten years the quantum complex sine-Gordon case was revisited by

Dorey and Hollowood [15] in the light of the theory emerging as a gauged WZW model [16].

With the semi-classical results of de Vega and Maillet as a guide, they proposed an exact

S-matrix based on the demands of the bootstrap programme. We begin our review with

the general form of a single soliton solution

u =
cos(a) exp [im sin(a)(cosh(θ)t − sinh(θ)x)]

cosh (m cos(a)(cosh (θ)(x − x0) sinh (θ)t))
, (2.1)

where a is a real parameter associated with the U(1) charge, and θ the rapidity of the

solution. From the expressions for the energy and charge

E =

∫ |∂0u|2 + |∂1u|2
1 − uu∗

+ m2uu∗ , Q = i

∫

dx
u∗∂0u − u∂0u

∗

1 − uu∗
, (2.2)

we easily obtain for the single soliton case

E =
4m

ξ2
cos(a) cosh(θ) , Q =

4

ξ2

(

sign[a]
π

2
− a

)

. (2.3)

In their paper Dorey and Hollowood argued that it is necessary to only consider specific

values for the coupling constant. Specifically they argued that the only acceptable values

are

ξ2 =
4π

k
, k > 1 , (2.4)

where k is an integer. This agrees with the WZW interpretation of the theory where k

corresponds to the level of the SU(2)/U(1) coset model. With this constraint their proposed

S-matrix reproduces the semi-classical spectrum of states derived by de Vega and Maillet.

In addition they proposed that the charge is conserved if it is defined modulo k. In the

following, we shall use k instead of the coupling constant ξ for reasons of simplicity.

The quantum spectrum can be found by using the Bohr-Sommerfeld quantisation rule

S(u) + E(u)τ = 2πn , n ǫ Z , (2.5)

where S is the action functional, E(u) the energy and τ the period of the solution u. No

topological distinction exists between the vacuum and the soliton sector, and thelowest-

charge soliton may be regarded as the the basic particle of the CSG theory. The static

one-soliton solution is

ustatic =
cos(a) exp (im sin(a)t)

cosh (m cos(a)(x − x0))
. (2.6)

This solution is not time-independent. It does not translate in the x direction but oscillates

in a breather-like fashion. As pointed out by Ventura and Marques [17], and Montonen [18],

the Bohr-Sommerfeld quantisation is equal to charge quantisation for scalar field theories

enjoying a global U(1) symmetry. For the CSG case the only time dependence for the

soliton solution in the rest frame is restricted to the phase i.e. uu∗ does not depend on

time. It is easy to show that for the static one-soliton

S(u) + E(u)τ = 2πQ , (2.7)

– 3 –
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Figure 1: Soliton charge Q(a)

which in turn implies

Q = n. (2.8)

This corresponds to a tower of states with ever increasing charge. However in the classical

case the charge is a periodic function. In the theory a appears only in trigonometric forms,

and therefore should be considered as an angle variable. This indicates that the formula for

Q which has previously appeared in the literature is only true for a certain region, namely

−π
2 ≤ a ≤ π

2 . If one plots Q as a function of a the result is a periodic pattern (figure 1). To

avoid confusion we shall consider a to lay in the region 0 ≤ a ≤ π
2 , unless stated otherwise.

As suggested by Dorey and Hollowood the charge should be defined modulo k which

leads to a finite spectrum depending on k

Q = ±1,±2, . . . ,±k−1
2 for k odd , (2.9)

Q = ±1,±2, . . . ,±k−2
2 , k

2 for k even . (2.10)

From the classical expression for the charge (2.2) we have

Q =
k

π

(

π

2
− a

)

. (2.11)

The quantisation of the charge leads to the following quantisation of a:

2πQ = 2πn ⇔ a =
π

k

(

k

2
− n

)

. (2.12)
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Through the quantisation of the charge parameter, the energy spectrum

M =
k

π
m cos(a) , (2.13)

is also obtained

M(Q) =
km

π

∣

∣

∣

∣

sin

(

πQ

k

)
∣

∣

∣

∣

. (2.14)

The Bohr-Sommerfeld quantisation provides us only with the quantum spectrum up to

leading order. According to de Vega and Maillet the next order corrections is achieved by

a simple renormalisation of the coupling constant

ξ2 → ξ2
R =

ξ2

1 − ξ2/4π
. (2.15)

or equivalently

k → kR = k − 1 . (2.16)

At this level an S-matrix may be written down that reproduces the semi-classical spectrum

to leading order. In their paper Dorey and Hollowood first presented a minimal choice for

the meson-soliton scattering matrix

S1Q = FQ−1(θ)FQ+1(θ) . (2.17)

which reproduced the semi-classical behaviour and agreed with the results of deVega and

Maillet. Moreover, through this they confirmed that the meson in the CSG theory can be

identified with the Q = 1 soliton. The function FQ(θ) is defined as

FQ(θ) =
sinh

(

θ
2 + iπ

2k
Q

)

sinh
(

θ
2 − iπ

2k
Q

) . (2.18)

S-matrices constructed from products of the FQ(θ) automatically satisfy unitarity and an-

alyticity constraints. With the above result as a starting point they proposed the following

S-matrix for arbitrary charge

SQ1Q2
= FQ1−Q2

[

Q2−1
∏

n=1

FQ1−Q2+2n

]2

FQ1+Q2
, (2.19)

which satisfies all the familiar restrictions and has the correct pole structure. In addition

they pointed out that this is exactly the minimal S-matrix associated with the Lie algebra

ak−1 and conjectured that for the specific choices of the coupling this S-matrix should be

exact.

With the general form of the S-matrix the review of the bulk case is concluded. More

details on the above results may be found in the relevant papers. Nevertheless, this pre-

sentation contain all the ingredients needed to examine the half-line case.

– 5 –
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3. Semi-classical quantisation

In this section we shall attempt to build the complete spectrum of quantum boundary-

bound states for the complex sine-Gordon model on a half line. The fact that the model pos-

sesses exact periodic solutions bound to the boundary makes the stationary-phase method

a suitable candidate for their quantisation. The method is based on the work of Dashen,

Hasslacher and Neveu [12, 13] for the semi-classical quantisation of the sine-Gordon model.

In this case it appears as a generalised version of the Bohr-Sommerfeld quantisation rule

Squ − T
∂Squ

∂T
= 2πn , (3.1)

where Squ = Scl − ∆. The parameter ∆ is related to the stability angles of the stationary

phase approach and produces the first order quantum corrections to the classical action.

We shall use the ordinary quantisation condition for the classical action Scl and then we

shall calculate the quantum corrections factor

Ψ =

(

∆ − T
∂∆

∂T

)

. (3.2)

Before embarking on quantisation, we will recall a few of the classical results about

the boundary spectrum from [8]. The energy of the half-line theory is given by

E =

∫ 0

−∞

[ |∂0u|2 + |∂1u|2
1 − uu∗

+ m2u

]

− 2C
√

1 − uu∗ (3.3)

For a given value of C, the lowest energy configuration corresponds to the vacuum u = 0.

Linearising the equations of motion and the boundary conditions (1.2) one calculates the

particle reflection coefficient can be found to be

K(k) =
ik + C

ik − C
(3.4)

where k is the momentum of the particle. For C < −m, one can show that the pole cor-

responds to a normalisable but in time exponentially growing perturbative mode showing

that the vacuum is an unstable configuration. For C in this range, the boundary can emit

a real soliton which effectively swaps the sign of C so that ultimately the classical field

configuration returns to u = 0, but now with C > m. For |C| ≤ m, it is possible to con-

struct a classical excited boundary state by taking u = ucl to be a static soliton solution

of the form in (2.6), provided that the parameters are chosen to obey the equation

C = ± m
√

1 + tan2(a) coth2(m cos(a)x0)
(3.5)

There are other more complicated boundary states based on multi-soliton solutions such

as breathers [8], but a thorough analysis of these is beyond the scope of the present study.

The boundary term of (1.3) preserves the U(1) charge as it only depends on mod(u).

The theory remains U(1) invariant and therefore the Bohr-Sommerfeld quantisation is

– 6 –
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equivalent to charge quantisation on the half line case as it was for the bulk. The quanti-

sation condition for the classical action reads

Scl[ucl] + Ecl[ucl]T = 2πQ = 2πn . (3.6)

with ucl the static one soliton solution of (2.6) with parameters chosen to satisfy (3.5). It

is a periodic solution with period T exhibiting a breather-like behaviour. It provides the

perfect starting point as the simplest boundary bound state of the classical theory. The

position of the centre of mass will determine the charge of the bound state as a fraction of

the soliton charge in the bulk. We can calculate the charge of the static soliton through

the expression

Q = −i

∫ 0

−∞

dx
u∗∂0u − u∂0u

∗

1 − uu∗
. (3.7)

Note that this charge is conserved without the need to add a term at the boundary. This

time however the integration takes place on the half line and finally yields

Q =
k

2π
(π − b − a) . (3.8)

The charge now depends on the boundary parameter C = m cos(b), which enters the

calculation through the position of the centre of mass. As a check that this formula is

correct, we can set b = π
2 which implies that we have the Neumann boundary condition

∂xu = 0, thus placing the soliton at exactly x = 0. The charge is then exactly half of the

equivalent charge of the soliton in the bulk (2.3) as expected. The quantisation condition

now reads

Q =
k

2π
(π − b − a) = n , (3.9)

or in terms of the charge parameter

a = π − b − 2πn

k
. (3.10)

The quantisation of a provides us with the first approximation of the semi-classical spec-

trum

En =
km

2π
cos(a) =

km

2π
cos

(

π − b − 2πn

k

)

. (3.11)

Having a general formula for the energy, it is useful to calculate the energy difference

between two adjacent states. We shall use this in the following section where we shall

compare it with the corresponding bootstrap result. For reasons of simplicity, we shall

assume that the values of the parameters are such that the cosine is positive for both

states as is their difference so that we can ignore any modulus appearing. The energy

difference is then written

En+1 − En =
km

2π

(

cos

(

π − b − 2π(n + 1)

k

)

− cos

(

π − b − 2πn

k

))

, (3.12)

– 7 –
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which after some manipulation simplifies to

En+1 − En =
km

π
cos

(π

2
− π

k

)

cos

(

π(2n + 1)

k
− π

2
+ b

)

. (3.13)

We shall return to this result at the end of the next section, after we have obtained a

relevant expression from the bootstrap programme.

Having obtained the leading order quantisation of the boundary spectrum, we calculate

the first-order correction to this. The step consists of calculating the quantity ∆

∆ = −Sct +

∞
∑

i=0

1

2
~ vi , (3.14)

where vi are the stability angles and Sct suitably selected counter terms to cancel any

infinities that arise. We shall first calculate the sum over the stability angles, and introduce

counter terms later as required. Following the standard procedure, we regulate the theory

by placing it in a box. The theory is already bounded on the right from the original

boundary, therefore another boundary should be introduced restricting the system to the

finite interval [−L, 0]. Placing the model in a box has the effect of discretising its energy

levels. Afterwards, we shall take the limit L → −∞ to recover the original system. A

simple and appropriate choice for boundary conditions at x = −L is to take the Dirichlet

boundary conditions u = 0, which reproduce the correct behaviour of u at infinity when

we take the limit L → −∞.

The stability angles are obtained by solving the linearised stability equation about

a given classical solution. In our case we perturb around the static one-soliton solution.

Once the solutions χ(x, t) for the stability equation are found then the stability angles can

be calculated from periodicity demands

χi(x, t + T ) = eiviχi(x, t) , (3.15)

Instead of solving directly the stability equation we can follow the method of Corrigan

and Delius to calculate the sum of the stability angles through the reflection factors. We

begin with the classical two-soliton solution of the CSG model which satisfies the stability

equation. By fixing the free parameters we can make one of the solitons S1 static by

taking δ1 = 1 and the other S2 very small by taking the charge parameter a2 close to zero.

Effectively we are left with a small perturbation around a static one-soliton background.

This is exactly the same method that Dashen, Hasslacher and Neveu followed to calculate

the stability angles of the sine-Gordon model. At infinity the static soliton is practically

zero whilst the perturbation appears as plane waves

χ(x, t) = e−iωt(eiksx + Rse
−iksx) . (3.16)

The reflection factor is found to be

Rs = −(cos(b − iθ))

(cos(b + iθ))

(sin(a + iθ) − 1)

(sin(a − iθ) − 1)
, (3.17)

– 8 –
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where we have set m = 1 without loss of generality. The rapidity θ which has been used

is related to the momentum through k = sinh(θ). The parameters a and b are the familiar

charge and boundary parameters. From the above expression for χ(x, t) and (3.15) we can

substitute

∆ =
1

2

∑

i

vi =
T

2

∑

i

ωi , (3.18)

where ω2
i = k2

i +1 and the counter terms have been neglected. Placing the system in a box

allows for discrete values of k, which should not be confused with the coupling constant.

From ∆ we must now subtract the vacuum contributions

∆ =
T

2

∑

i

√

k2
s,i + 1 −

√

k2
0,i + 1 . (3.19)

From the Dirichlet boundary conditions we can obtain the following equation relating the

discrete momenta with the reflection factors

e−2iksL =
(cos(b − iθ))

(cos(b + iθ))

(sin(a + iθ) − 1)

(sin(a − iθ) − 1)
. (3.20)

A similar equation exists for the fluctuations around the vacuum

e−2ik0L = − i sinh(θ) + cos(b)

i sinh(θ) − cos(b)
. (3.21)

Using the same argument as Corrigan and Delius, we can define a function κ(k0) such that

for large k we may write

ks = k0 +
κ(k0)

L
, (3.22)

where the index i has been suppressed. This is possible since in the limit θ → +∞ and

taking into account the general quantisation condition (3.9), both reflection factors Rs and

R0 are equal. Through the difference ks−k0 a function κ(θ) may be defined using the ratio

of the corresponding reflection factors

e−2iκ(θ) = −(sin(a + iθ) − 1)

(sin(a − iθ) − 1)

(sin(b + iθ) − 1)

(sin(b − iθ) + 1)
. (3.23)

We can now calculate ∆ in terms of κ. We can substitute (3.22) in (3.19) and then expand

the expression in terms of L. Keeping only the leading term of the expansion we end up

with

∆ ∼ T

2L

∑

i

k
(0)
i κ(k

(0)
i )

√

(k
(0)
i )2 + 1

, (3.24)

which in the limit L → +∞ can be substitute with the integral form

∆ =
T

2π

∫ =∞

0
dk

k√
k2 + 1

κ(k) . (3.25)

– 9 –
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The calculation is greatly simplified if we change variables to θ

∆ =
T

2

∫ +∞

0
dθ sinh(θ)κ(θ) . (3.26)

The integral is divergent but we can introduce specially chosen counter-terms to obtain a

finite result. We begin with an integration by parts

∆ =
T

2π

(

[κ cosh(θ)]+∞
0 −

∫ +∞

0
cosh(θ)

dκ

dθ

)

. (3.27)

The first term is not divergent since the function κ approaches zero (through the quanti-

sation condition) as θ goes to infinity. In this limit the combination κ(θ) cosh(θ) is zero.

In addition, κ(0) = 0 so the first term in (3.27) vanishes. The second term is however

divergent and counter terms have to be introduced to cancel infinities. The latter appear

in the same fashion as the logarithmic divergencies in the bulk which are tackled through

normal ordering. With some straightforward manipulation the derivative term yields

dκ

dθ
= − cos(b)

cosh(θ) − sin(b)
+

cos(a)

cosh(θ) − sin(a)
. (3.28)

The two terms are almost identical and both divergent. A logical choice of counter-terms

seems to be

− cos(b)

cosh(θ) + 1
+

cos(a)

cosh(θ) + 1
, (3.29)

where the first removes the divergence associated with the boundary and the second with

the one in the bulk. The complete expression to be calculated is now

∆ = −
∫ +∞

0
dθ cosh(θ)

(

cos(a)

cosh(θ) − sin(a)
− cos(a)

cosh(θ) + 1
− cos(b)

cosh(θ) − sin(b)
+

cos(b)

cosh(θ) + 1

)

,

which finally yields

∆ =
T

2π

(

− cos(a) + cos(b) + b sin(b) +
π

2
sin(b) − a sin(a) − π

2
sin(a)

)

. (3.30)

Having determined the form of ∆ we are now in a position to calculate the corrections to

the classical Bohr-Sommerfeld rule. The expression of ∆ depends on the period T through

the charge parameter a

sin(a) =
2π

T
. (3.31)

The correction term of (3.2) is easily calculated

∆ − T
∂∆

∂T
= −a − π

2
. (3.32)

With all the necessary parts calculated, the generalised Bohr-Sommerfeld quantisation

condition finally reads

kr(π − br − a) = 2πn , (3.33)

– 10 –
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where

kr = k − 1 , br =
kb − 3π

2

k − 1
. (3.34)

The form of the new quantisation condition is exactly the same as the first approximation

of (3.9), only with a redefinition for the boundary and coupling constants. The shift in the

coupling constant is to be expected. In the bulk case the first order corrections amount to

a simple shift in k (2.16) as pointed by de Vega and Maillet [19]. Our result is consistent

with this.

In addition to k, the boundary constant has to be renormalised as well. It is not clear

why this renormalisation is needed or whether it should appear at all. In a paper examining

the closely related ak−1 theory, Penati and Zanon [20] argued that renormalisation of

boundary parameters has to be introduced in certain models to ensure integrability at the

quantum level. The renormalisation of the coupling constant and its significance remains

one of the open questions for the quantum CSG theory.

4. The bootstrap method

In the previous section we constructed the quantum spectrum using the semi-classical

stationary-phase method. Although the results are not exact, they provide us with an ac-

curate picture of the set of states. The same spectrum can be obtained using the completely

different approach of the bootstrap method, based on the pioneering work of Cherednik [21],

Ghoshal and Zamolodchikov [9], and Fring and Köberle [22]. The idea behind this method

is to construct the reflection factors through the boundary bootstrap relation, and through

the poles therein to identify boundary bound states. The process is analogue to the bulk

case where the existence of bound states is indicated by poles found in the S-matrix.

In this section we shall conjecture the form of the full quantum reflection factor for the

charge one particle of the theory reflecting off the unexcited (vacuum) boundary. This is

constrained by the principles of analyticity, unitarity and crossing symmetry, together with

the boundary Yang-Baxter equation. Furthermore the factor should contain a pole in the

physical strip consistent with the existence of a boundary bound state found above. The

reflection amplitudes for higher charged solitons, both reflecting off the vacuum and excited

boundaries, can be deduced from this basic amplitude by the repeated use of the reflection

bootstrap equations and boundary bootstrap equations respectively. These contain poles

consistent with the spectrum of bound states found in the previous section. Also the

classical limit of our conjecture coincides with the classical results (3.4), (3.17). Finally we

compare our results with existing results [9, 25], for the q-state Potts models whose bulk

S-matrix coincides with that of the CSG for q = 2 (the Ising model) and q = 3, and find

agreement in those cases that correspond to diagonal scattering.

Whilst our conjectured reflection factors are highly restricted by the requirements of

analyticity, unitarity and crossing symmetry, the correct classical limit, and some of the

correct pole structure they might not be pinned down completely by these requirements,

and our conjecture is in some sense a ‘minimal’ solution to the constraints. Furthermore
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we have not attempted a complete explanation of the physical strip poles appearing in

the reflection amplitudes, some of which might be explained by Coleman-Thun like on-

shell diagrams and others by more exotic boundary bound states as is the case for Toda

theories [23].

4.1 Quantum reflection factor for the CSG particle

We begin our attempt to introduce a suitable reflection matrix K1 for the CSG particle

with the assumption that it should be made out of F factors that were defined in (2.18).

It is a natural selection as both the boundary Yang-Baxter equation and the bootstrap

equations relate reflection matrices with the S-matrix which is expressed only in terms of

such functions. There is another advantage to this choice. Unitarity, real analyticity and

2πi-periodicity requirements are automatically satisfied if K appears as a product of such

factors. Some of the most important properties enjoyed by these functions include the

following

FQ(θ)FQ(−θ) = 1 , F2Q(2θ) = −FQ(θ)FQ+k(θ) , FQ(θ + iπ) = −FQ+k(θ) .

The first of the above is responsible for the fulfillment of the unitarity requirement. The

remaining equations demonstrate basic transformations between rapidity and charge and

will be used in the bootstrap and crossing symmetry equations.

The spectrum of the model is only degenerate under charge conjugation. Given that

charge is conserved by our choice of boundary conditions, we shall assume that the reflection

scattering matrix is diagonal, and accordingly we shall denote the scattering matrix of the

charge a soliton/particle by Ka. Since the model is symmetric under charge conjugation

we shall take Ka = Kā where ā denotes the antiparticle of particle a. For the Zk symmetric

model this can be written Ka = Kk−a. Since both Ka and the bulk S-matrix are diagonal

the boundary Yang-Baxter equation

Ka(θa)Sab(θa + θb)Kb(θb)Sab(θa − θb) = Sab(θa − θb)Kb(θb)Sab(θa + θb)Ka(θa) ,

where θa, θb, θc are rapidities associated with a fusion process a+b → c, is trivially satisfied.

In their paper Dorey and Hollowood identified the CSG particle with the Q = 1 soliton.

In this context the first real constraint for K comes from the crossing symmetry relation

which for our case is written as

K1(θ)K1̄(θ + iπ) = S1,1(2θ) , (4.1)

where K1̄ is the reflection of the antiparticle and S1,1 is the two particle scattering matrix.

The CSG S-matrix (2.19) is identical to the minimal ak−1 S-matrix which in turn can

be recovered from the a
(1)
k−1 Affine Toda field theory (ATFT) when the parts involving the

coupling constant are omitted. It is therefore reasonable to build our reflection matrix

based on the proposed form for the particle reflection matrix of the boundary a
(1)
k−1 ATFT

theory. In their paper Delius and Gandenberger [23] present a general form for the particle

reflection matrix of the a
(1)
k−1 ATFT. As in the S-matrix case, the reflection matrix is a

product of two parts, one of which depends on the coupling constant and the other is
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independent of the coupling constant. Each part satisfies the bootstrap independently

so we can recover a K-matrix for our model by simply ignoring the coupling dependent

pieces. Henceforth we shall adopt the block notation notation (x) = Fx(θ). Ignoring the

parts involving the coupling constant in the ATFT reflection factor, the remaining factors

Kbase
n =

n
∏

c=1

(c − 1)(c − k) , n = 1..(k − 1) , (4.2)

constitute a complete set satisfying unitarity, the crossing-symmetry condition, charge

conjugation symmetry, (4.1) as well as the reflection bootstrap equation

Kbase
c (θc) = Kbase

a (θa)K
base
b (θb)Sab(θa + θb) . (4.3)

However this reflection factor cannot be the full story; Kbase does not contain any

poles which can be related to boundary-bound states discussed in previous sections. To

rectify this, we need to multiply the reflection factor by an additional factor Za(θ), so that

Ka(θ) = Za(θ)Kbase
a (θ), (4.4)

where Za(θ) contains poles in the physical strip corresponding to boundary bound states.

In order that the new reflection matrix be consistent with unitarity, crossing symmetry,

charge conjugation symmetry and the reflection bootstrap we demand that

Za(θ)Za(−θ) = 1 , Za(θ)Za(θ + iπ) = 1 , Za(θ) = Zk−a(θ) , Zc(θc) = Za(θa)Zb(θb) (4.5)

where as above θa, θb, θc are the rapidities associated with a fusion process a+b → c. (In [9]

and [23] , Za are called CDD ambiguities, but strictly speaking CDD factors should not

contain poles in the physical strip, while the factors Za are specifically designed to contain

such poles, so we shall refrain from using this nomenclature.)

We begin our search for a suitable factors Za by determining where the poles corre-

sponding to the bound states we have described should lie. Consider the process where the

unexcited boundary becomes excited by the absorption of a charged soliton, as described

in (figure 2). During the process both energy and charge are conserved. We begin with

the charge conservation. Far away from the boundary the soliton (particle) behaves as in

the theory in the bulk. Its’ charge is equal to the normal soliton charge Q1 = k
π
(π

2 − a1).

After the formation of the bound state the charge Q2 of the boundary is given by the

formula (3.8). Equating these yields
(

π

2
− a1

)

=
1

2
(π − b − a2) . (4.6)

Using the same arguments we can write down an equation describing the conservation of

energy

4m cos(a1) cosh(θ) − 2m cos(b) = 2m cos(a2) , (4.7)

where the −2m cos(b) term is the boundary energy contribution when the field is zero.

For simplicity, we have assumed in the above equations that 0 < ai < π/2 and that
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Figure 2: The boundary bound state.

a2 < b < π − a2; the generalisation of these equations to other ranges of the parameters is

straightforward.From (4.6) and (4.7) we can determine the rapidity θ at which the boundary

bound state is formed

θ(0,n)
n = i

π

k
(n + B) where B =

k

π
b − k

2
. (4.8)

For the above relation the quantisation condition (3.9) was also used. It is worth noting

that in deriving this equation we assumed that the charge of the incoming particle was

positive, or in terms of n that 0 < n < [k/2] where [x] stands for the integer part of x.

Real analyticity and unitarity conditions once again prompt us to construct the Za

factors out of block functions, so that the former are satisfied automatically. In order for

the crossing relation to be satisfied any block factor (x) should be accompanied by the

charge conjugate factor (k − x). Delius and Gandenberger showed for such a combination

the bootstrap closes. Now that we have determined where the pole should be, we need to

express it in block notation. Since (x) has a pole in the denominator at θ = iπ
k
x, from (4.8)

we might expect Zn to contain the factor (B + n)(k − B − n). for 0 < n < [k/2]. The Zn

for larger n are determined by the charge conjugation symmetry Zn = Zk−n. The factors

Zn might contain other factors besides these and indeed we will find that this is the case.

The number of blocks in Kn increases as n increases towards k
2 and then decreases as it

approaches k − 1, consistent with our demand that the theory is Zk symmetric so that

Kk+1 = K1, and that under charge conjugation we expect Kn = Kk−n.

To proceed we can decide on a ‘minimal choice’ for K1, that is we choose the factor Z1

to consist of the first pole and its’ charge conjugate counterpart. The full reflection factor

then reads

K
(0)
1 = (1 + B)(k − 1 − B)(1 − k) . (4.9)
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The superscript denotes the boundary excitation state. In this particular case K
(0)
1 de-

scribes the reflection of a soliton of charge Q = 1 from an unexcited boundary. In the

present analysis we shall only consider poles in the factors Zn and not in Kbase
n . The pole

associated with the (1 + B) factor corresponds to the lowest boundary bound state with

energy

E
(1)
b =

km

2π
cos(π − b − 2π

k
) . (4.10)

which is formed when a soliton of charge Q = 1 (which is the particle of the theory) fuses

with the boundary. The conjugate term (k− 1−B) also has a pole but does not lie within

the physical strip ℑ(θ) ǫ (0, π
2 ). Note that in the classical limit k → ∞ the reflection factor

K
(0)
1 → i sinh(θ) + cos(b)

i sinh(θ) − cos(b)
(4.11)

in agreement with the identification of the charge 1 soliton as a particle and the classical

particle reflection factor (3.4).

With K
(0)
1 as a starting point we can construct the whole set of K

(0)
n factors by using

the reflection bootstrap (4.3). Later we shall also apply the boundary bootstrap

K
(β)
b = Sab(θb − θαβ

a )K
(α)
b Sab(θb + θαβ

a ) , (4.12)

to each of them to obtain the corresponding reflection matrices from the excited boundary.

In both cases new block factors are generated carrying poles which indicate new bound

states. If our choice for the factor Za in (4.9) is correct we expect the bootstrap to close,

i.e. to end up with a finite spectrum of states which is repeated after k steps. Pictorially

this can be seen in (figure 3)

Let us begin by calculating the factors K
(0)
n describing reflection off the unexcited

boundary. For instance we can calculate the reflection factor of a charge Q = 2 soliton

bouncing off the unexcited boundary using the equation

K
(0)
2 (θ) = K

(0)
1

(

θ − iπ

k

)

K
(0)
1

(

θ +
iπ

k

)

S1,1(2θ). (4.13)

Substituting K
(0)
1 from (4.9) and S1,1 from (2.19) we get

K
(0)
2 = (2 + B)(k − 2 − B)(B)(k − B)(1 − k)(1)(2 − k) . (4.14)

By iterated use of the reflection bootstrap equation we arrive at the formula

K(0)
n = Kbase

n

n−1
∏

i=0

(B + 2 − n + 2i)(k − B − 2 + n − 2i) (4.15)

Note that this function is a product of blocks of the general form (c)(k − c) with which

we started. In particular note that the factor Zn in K
(0)
n always involves the block pair

(n + B)(k − n − B) as expected.
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Figure 3: The Bootstrap Programme.

For even k it is easy to show that the bootstrap closes, and we conjecture that (4.15)

are the correct quantum reflection factors in this case. In particular we have that Ka=Kk−a

as desired. This follows because the terms in (4.15) of the form (B +2−n+2i) can cancel

with those of the form (k − B − 2 + n − 2j) for appropriate i, j and for k even, using the

properties that (x) = 1/(−x). However this is not possible in the case that k is odd. In

this case our conjecture for K
(0)
1 needs to be modified. A possibility which is consistent

with charge conjugation symmetry, as well as unitary, crossing symmetry and the reflection

bootstrap is to take

K
(0)
1 = (1 + B)(k − 1 − B)(B + c)(k − c − B)(1 − k) (4.16)

where c is any even integer. Unfortunately, an additional factor (B + c)(k − c − B) is

constrained to be 1 in the classical limit k → ∞, since our previous conjecture (4.9)

already had the correct classical limit, and there is no choice of c which gives this classical

limit. Thus we have been unable to find a suitable reflection factor in the case that k is

odd, and in what follows we shall take k to be even.

4.2 The boundary bootstrap

In the previous section we proposed a suitable expression for the K
(0)
1 reflection factor for k

even, and saw how through the reflection bootstrap all the K
(0)
n factors can be obtained. We

now turn to the boundary bootstrap to construct the boundary reflection factors of solitons

bouncing off an excited boundary. This will allow us to find a formula for the reflection

matrix K
(n)
m describing how a particle of charge m scatters of a boundary of charge n. We

shall not attempt to give a complete analysis of all the poles appearing in the expression for

K
(n)
m but we will verify that it does contain the poles that we would expect from our semi-

classical analysis. In particular we will show that the energy difference between adjacent

boundary bound states is consistent with the semi-classical formula (3.13).
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Let us first derive the reflection matrix K
(n)
1 describing how a particle scatters off a

boundary of charge n. We begin with the boundary bootstrap equation (4.12) for K
(1)
1

which is

K
(1)
1 = K

(0)
1 S1,1(θ + θ

(0,1)
1 )S1,1(θ − θ

(0,1)
1 ) , (4.17)

where θ
(0,1)
1 = iπ

k
(1 + B) denotes the pole in K

(0)
1 . The product of S-matrices in the above

relation is equal to a shift in their charge. In general the following relation holds for any

ψ.

S1,1(θ + iψ)S1,1(θ − iψ) =

(

2 +
k

π
ψ

)(

2 − k

π
ψ

)

. (4.18)

Putting everything together yields

K
(1)
1 = (1 + B)(k − 1 − B)(3 + B)(1 − B)(1 − k) . (4.19)

We see through this procedure a new pole appears from the block (3 + B) corresponding

to the absorption of a charge Q = 1 particle into the charge Qb = 1 boundary. This can

then be used as an input to find K
(2)
1 from the boundary bootstrap,

K
(2)
1 = (k − 1 − B)(3 + B)(1 − B)(5 + B)(1 − k) , (4.20)

where a cancellation has already taken place. A new pole comes from the block factor

(5 + B) which will be used in the next step. The expression for K
(3)
1 is

K
(3)
1 = (k − 1 − B)(1 − B)(5 + B)(7 + B)(1 − k) , (4.21)

where new factor (−3−B) has cancelled with the block factor (3+B) and the factor (7+B)

has introduced a new pole. This procedure will not continue indefinitely. After k steps

we expect to return to original form of K
(0)
1 . However it is clear that the K

(n)
1 reflection

matrix will have a pole indicated by the block factor (2n + 1 + B) at ψn = π
k
(2n + 1 + B).

Having a general formula about the n-th pole allows us to write down a recursive relation

for the energies of the bound states. We begin with the energy of the first bound state.

The difference between the first excited boundary state and the non-excited boundary is

E1 − E0 = A cos(ψ0) . (4.22)

The right hand side is equal to the mass of the incoming particle that binds with the

boundary at a fixed angle θ = iψ0. The parameter A is related to the mass of the particle

and will be determined from the comparison with the semi-classical results. The formula

may be used recursively to finally yield

En+1 − En = A cos(ψn) = A cos

(

π

k
(2n + 1 + B)

)

. (4.23)

This formula should be compared with the one derived from the semi-classical ap-

proach (3.13). Both describe the exact same energy gaps between two bound states. The

arbitrary parameter A in (4.23) can be read directly from (3.13)

A =
km

π
cos

(π

2
− π

k

)

=
km

π
sin

(π

k

)

(4.24)
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which is equal to the energy of the particle. In the limit that k → ∞ (the classical limit)

the soliton becomes infinitesimally small and the boundary-bound states spectrum become

continuous.

We now give a general formula for K
(n)
m . These can be obtained from K

(0)
m using the

boundary bootstrap relation

K(n)
m = Sn,m(θ + θ(0,n)

n )Sn,m(θ − θ(0,n)
n )K(0)

m (4.25)

Explicitly we find that

K(n)
m = (B + 2n − m)(−m − B)(2n + m + B)(m − B) (4.26)

×
m−1
∏

i=1

(2n + 2i − m + B)2(2i − m − B)2
m
∏

c=1

(c − 1)(c − k)

×
m−1
∏

j=0

(B + 2 − m + 2j)(k − B − 2 + m − 2j)

Note that if one repeats the analysis of charge conservation and energy conservation

for a particle/soliton of charge m being absorbed by the boundary, but now in the case

that the boundary is excited with initial charge n one discovers that one would expect a

pole at

θ(n,n+m)
m = i

π

k
(2n + m + B) . (4.27)

and indeed our solution exhibits such a pole. Also, note that both K
(n)
m and K

(0)
m satisfy

the same reflection bootstrap equations, so that their ratio

K
(n)
m

K
(0)
m

= Zm = Sn,m(θ + θ(0,n)
n )Sn,m(θ − θ(0,n)

n ) (4.28)

satisfy the equations (4.5). This is exactly the form of the one-parameter solutions to these

equations discussed in [26].

We conclude this section with a brief discussion about the poles appearing in the

reflection matrix. We expect the terms coming from Kbase
n which are independent of the

boundary parameter B in (4.2) to be explained in terms of a on-shell triangle diagram as

is the case for the a
(1)
n affine Toda theory. A full discussion can be found in [23]. The

remaining poles which depend on B are associated with boundary-bound states. The full

set of poles generated from the bootstrap programme come from the general blocks (n+B)

and (k − n − B) which have poles at

−iθn = ψn =
π

k
n − π

2
+ b and −iθ′n = ψ′

n = π −
(π

k
n − π

2
+ b

)

(4.29)

From the forms above we can see that if ψn lies in the physical strip (0, π
2 ) then ψ′

n does

not, and vice versa. Assuming that the pole is at ψn then it lies in the physical strip if

π

2
> ψn > 0 ⇔ 1 >

n

k
+

b

π
>

1

2
(4.30)
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As soon the above condition is no longer true then the pole appears in the conjugate block

at ψ′
n. This however does not alter any of our results. From (4.23) we can see that ψn or

ψ′
n appear in the argument of the cosine so both correspond to the same absolute energy

difference between two states.

4.3 Results for k = 2 and k = 3

For k = 2 and k = 3 the bulk S-matrix of the complex sine-Gordon model coincides with

that of the q-state Potts model for q = 2 (Ising model) and q = 3 respectively, and can be

compared with the results [9, 25]. For k = 2, which corresponds to the Ising model, the

CSG model has only one particle whose reflection factor is given by

K
(0)
1 = (1 + B)(1 − B)(−1) = i tanh

(

θ

2
− i

π

4

)

i sinh(θ) − sin(b)

i sinh(θ) + sin(b)
(4.31)

This can be compared with the reflection factor for the Ising model given in [9]:

Rh(θ) = i tanh

(

θ

2
− i

π

4

)

i sinh(θ) − κ

i sinh(θ) + κ
(4.32)

where κ = 1 − h2/2m and h is the boundary magnetic field. These two expressions are

identical if we identify κ = sin(b), or in terms of the boundary coupling C

±
√

1 − C2 = 1 − h2

2m
. (4.33)

Free boundary conditions in the Ising model correspond to setting the boundary magnetic

field h = 0. In the CSG model, this corresponds to turning off the boundary potential, i.e.

putting C = 0 which results in Neumann conditions ∂xu = 0 . Fixed boundary condition

in the Ising model correspond to the limit h → ∞. This corresponds to the limit C → ∞
in the CSG model, which results in the Dirichlet-like condition u = 0.

Although reflection factors for the q = 3 Potts model have been found [25], we are

unable to compare these with our results, since we do not have a conjecture for the reflection

factor in the case that k is odd. Nonetheless we might be able to use these results as a clue

how the case for odd k works. Chim gives results for fixed and free boundary conditions.

His result for fixed boundary conditions can be written

Rf (θ) = (−2) = Kbase
1 (θ) (4.34)

so in this case Z1 = 1. Chim’s solution for free boundary conditions corresponds to non-

diagonal scattering in which the particle 1 is reflected from the boundary as the antiparticle

1̄. This cannot correspond to any of the charge-preserving integrable boundary conditions

for the CSG considered in this paper.

5. Discussion

We used semi-classical methods to obtain the boundary spectrum of the CSG model. Hav-

ing incorporated the unitary and crossing constraints, we found that we needed to adjust
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our simplest guess for the reflection factor of a particle by an extra factor, in order that

it exhibited a pole corresponding to process of absorption of a particle by the boundary.

Reflection factors for higher charge solitons, and for particles and solitons scattering off

excited boundaries were obtained by iterating the reflection bootstrap and boundary boot-

strap respectively. These formed a consistent closed set under the bootstrap, at least in

the cases that the coupling constant k was taken to be even. Although a complete survey

of the poles appearing in these reflection factors was not conducted, the position of poles

amongst all the reflection factors appears to be consistent with the boundary bound spec-

trum derived semi-classically, suggesting that this might be the complete set. Whether

a consistent reflection factor for the cases where k is odd can be found is an interesting

question for future research.

One final point to be made is that although we have used for our comparison equa-

tions (3.9) and (3.13) which correspond to the first approximation in the semi-classical

approach, we can extend our results to agree with the first order corrections by simply

substituting everywhere k = kr and b = br. The redefinition of both parameters change

nothing in the bootstrap approach. If we believe, as seems to be the case for the bulk

coupling constant, that the boundary coupling constant receives no further corrections at

higher orders in perturbation theory, then the formulae containing kr and br would be

exact.
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